

Southampton

Systems

by

Professor Vaughan Pomeroy

The LRET Research Collegium Southampton, 11 July – 2 September 2011

School of Engineering Sciences

Systems

Professor Vaughan Pomeroy December 2010

Icebreaker

- Think of a 'system' that you are familiar with
- What are the boundaries of the system?

• Who has an interest in the design of the system?

• Aim – to challenge your thought processes!

School of Engineering Sciences

Introduction to systems engineering

Origins

- Defence systems integrated systems for fighter control
- Electronics radar and navigation
 - Systems reliability
 - Reliability by design
- 'Systems analysis' invented by RAND 1956
- MIL Handbooks, Reliability Databanks, modelling methodologies, link to Quantitative Risk Assessment
- Systems thinking
- ISO 15288.2002 and .2008

Air defence systems

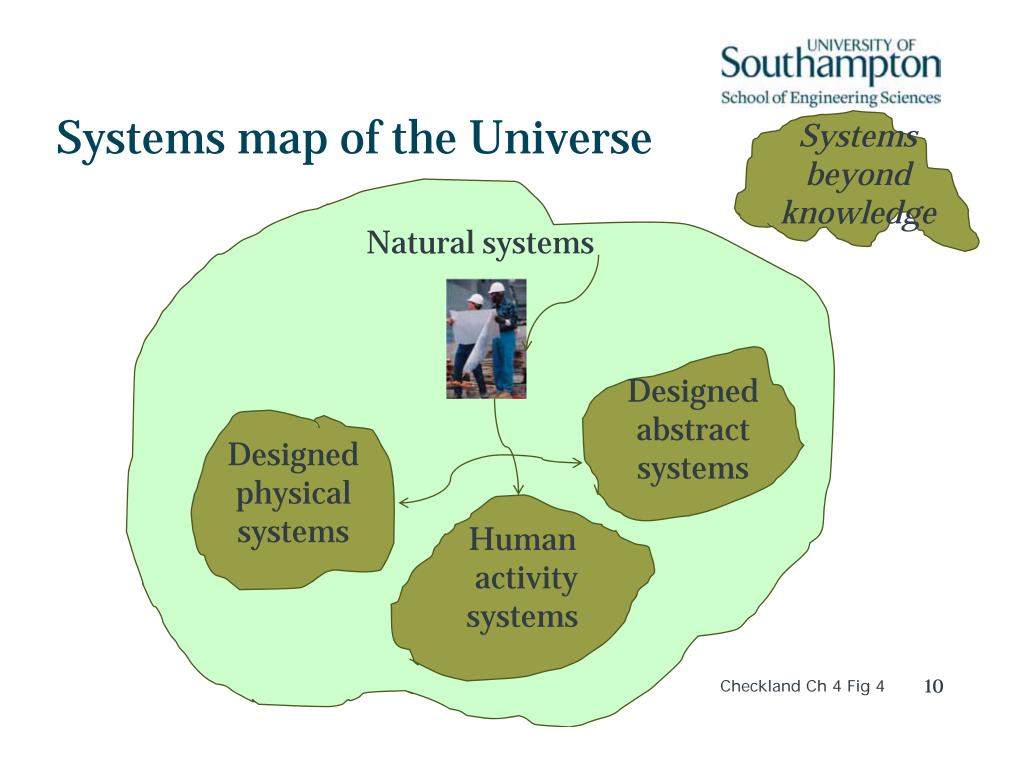
- Introduction of longer range detection
- Coordination of data from detection sites
- Interpretation of data
- Information creation and reaction planning
- Civilian air raid warning
- Activation of fighter response
- Active in-flight vectoring to meet developing scenario
- Recall of responders

Air defence systems

- Introduction of longer range detection
- Coordination of data from retection sites
- Interpretation of data
- Information creation and reaction planning
- Civilian air raid warning
- Activation of fighter response
- Active in-flight vectoring to meet developing scenario
- Recall of responders

Systems engineering process methodology

- Need for formal process to ensure all tasks covered
- Multi-disciplinary aspects
- Encompasses all relevant engineering tools
- Aims to ensure that 'the system' that is delivered meets the needs of the customer and user, whilst satisfying the requirements of all relevant stakeholders


Problem-solving sequence – hard systems

- Problem definition
- Choice of objectives
- Systems synthesis
- Systems analysis
- Systems selection
- System development
- Current engineering

Problem-solving sequence – soft systems

- Problem situation unstructured
- Problem situation expressed
- Root definition of relevant systems
- Conceptual models
- Comparison of models with problem situation
- Determination of feasible, desirable changes
- Action to improve problem situation

Summary

- Systems engineering methodologies have developed since 1940, initially in the defence sector
- Methodologies are closely related to safety and risk analysis
- Underlying processes exist to ensure that a robust approach is taken, including all stakeholders
- Recognition that systems engineering activities go beyond
 - Initial design, build and setting to work
 - Involve human activities
 - Involve interactions with natural systems

School of Engineering Sciences

System boundaries

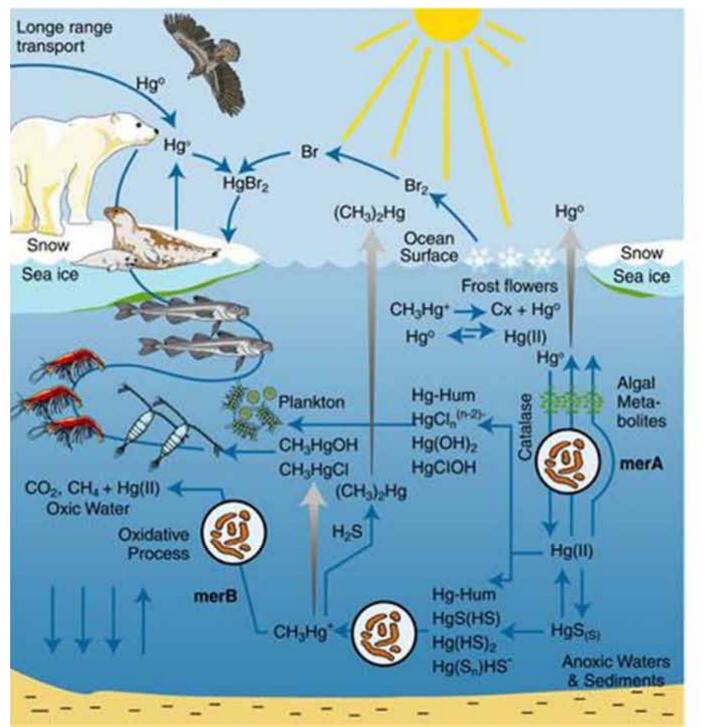
System boundaries?

- Need to understand
 - Context of use
 - Interactions with wider systems
 - Interfaces with other 'sub-systems'
 - Information exchanges
- Includes
 - Operational environment
 - Users
 - Third parties

External environment – ISO/IEC 15288

- Regulatory requirements
- Codes and standards, and other normative documents
- Natural constraints
- Technologies availability, maturity
- Commercial position competition, financial conditions, trade restrictions
- Risk business, technical, legal, political

Global environment


- Climate change planet warming
- Discharges to air carbon dioxide, SO_x, NO_x, particulates, hydrocarbons
- Discharges to water and land ballast water, grey water, solid waste

- Impact of maritime technology solutions on the environment
- Impact of the environment on maritime technology solutions

Marine environment

- Impact of maritime operations on:
 - Water
 - Pollution
 - Underwater noise
 - Temperature, locally
 - Seabed
 - Disturbance due to wash, fishing, etc
 - Disruption due to dredging, offshore structures, etc

Southampton School of Engineering Sciences

Marine food chain

www.mim.dk

Systems considerations

- Minimization of risk of damage to marine ecosystem
 - Through permanent change
 - Through intermittent change
- Development of solutions which recognize impacts
 - On ecosystem and marine food chain
 - On seabed

Users

- Recognition that systems must be usable by averagely competent people
- Usability of interfaces
 - Ergonomics
 - Displays
 - Information presentation
 - Presentation of 'context'
- Language and terminology to ensure clarity of meaning

Users

- Recognition that systems must be usable by averagely competent people
- Usability of interfaces
- Presentation of key information for user decision-making
 - Alarms
 - Operating parameters
- Dependability reflecting reliance by user on system
 - May not be the intention of the designer

The wider community

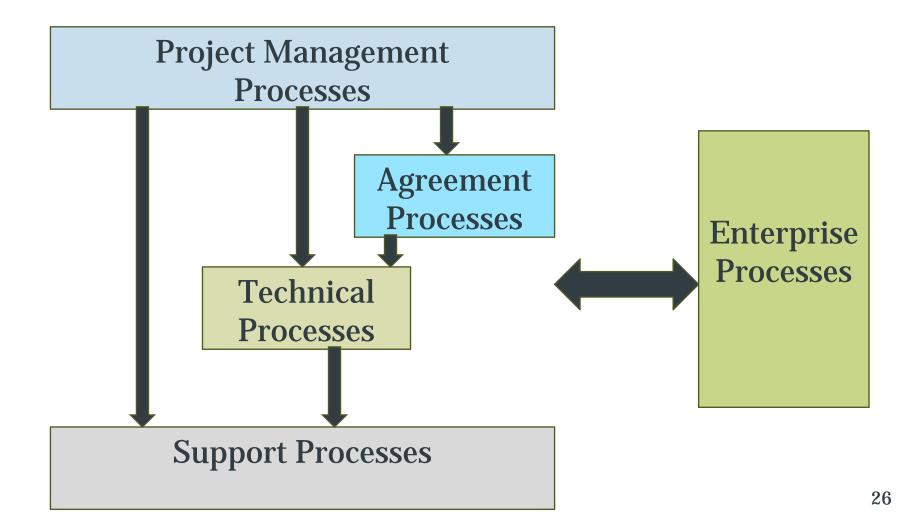
- Political factors regional, national, local
- Regulatory regimes, including planning
- Accident preparedness response arrangements
- Interaction with other users of marine environment
- Public perception of industry

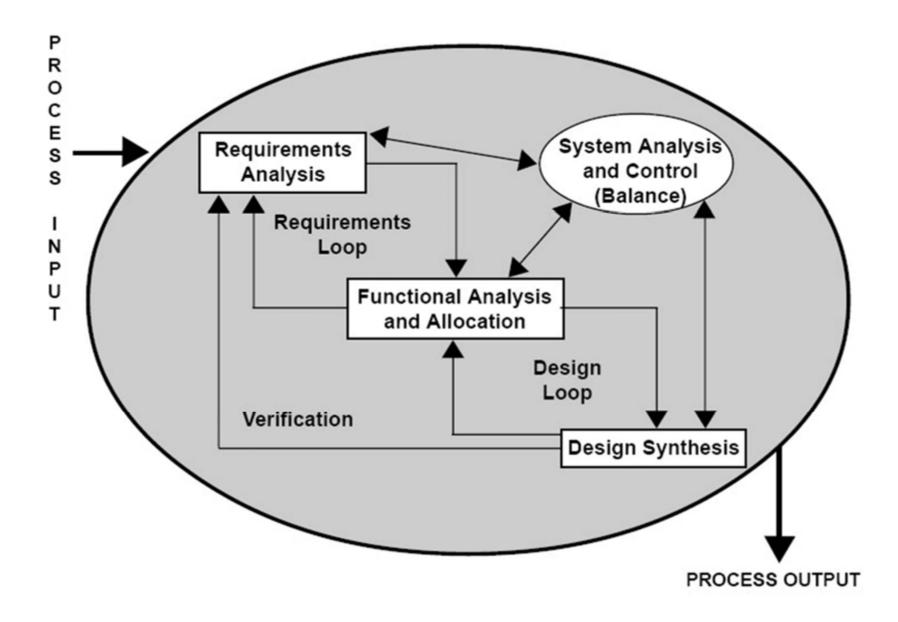
System boundaries - summary

- Without a clear understanding of where the boundaries are the system design will probably be incomplete
- The Systems Integrator should ensure that at each level the appropriate boundaries are defined and compatible with the next higher level
- The boundaries are case specific

School of Engineering Sciences

Systems engineering processes




Key terms

- System
 - Combination of interacting elements organized to achieve one or more stated purposes
- System of interest
 - System whose life cycle is under consideration
- System Element
 - A discrete part of a system
- **Enabling System**
 - A system that complements a system of interest but does not necessarily contribute to its operational functioning 25

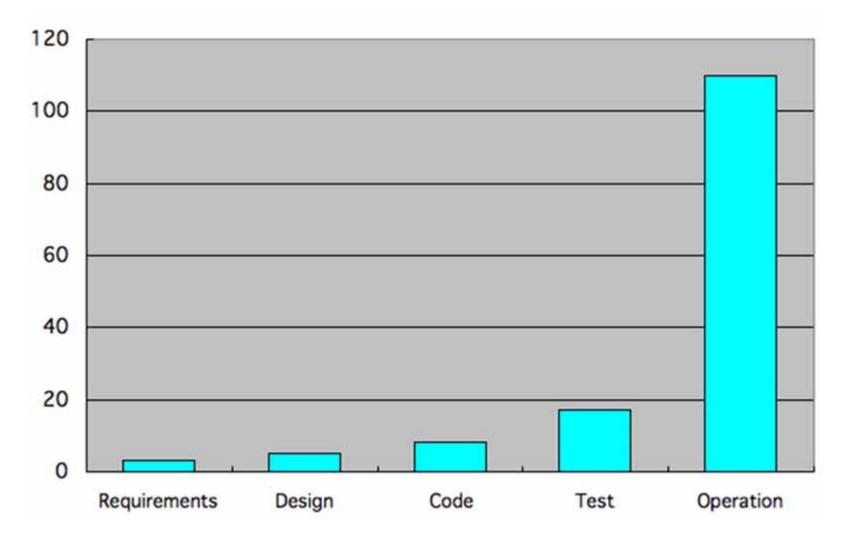
Enterprise environment

Summary

- Processes are not a substitute for good engineering
- IT/software pedigree is a barrier to wider adoption, partly due to belief that the process bureaucracy is counter-productive
- Standards exist, including defence industry architecture frameworks
- Further work is ongoing to improve commonality of language and definitions

School of Engineering Sciences

Focus on requirements definition


Requirements definition

- Errors at this stage jeopardize project outcomes
- Rework and change during project execution are expensive
- Cost of rework and change increases exponentially as project moves along timeline

- Insufficient effort is often expended in early stages
- Assumptions are made about 'user expectations' which may not be valid

Cost of correction

Who has a view for a maritime project?

- Operator
- Owner
- User
- Maintainer
- Repairer
- Regulator
- Constructor
- Suppliers

Architectural framework - maritime

Viewpoints – what influences these?

- Experiences
 - Individuals
 - Organizations
 - 'race memory'
- Expectations
 - Immediate exploitation prospect
 - Future prospects
 - End-of-life prospect

Requirements definition

- Process of elicitation
 - To extract input from all stakeholders
 - To challenge to determine importance must have, should have, might have, nice to have
- Process of consolidation
 - To derive a common solution
- Process of validation
 - To test the solution against the various viewpoints
 - To identify significant conflicts and feed reassessment if necessary

Summary

- Key to successful outcome
- Without a clear and shared view of requirements
 - No certainty that outcome will meet client expectations
 - Cascade to lower tiers in supply chain is problematic
- With a clear view of requirements
 - Translating requirements throughout supply chain is robust and consistent
 - Validation and verification can be against clear and consistent criteria – relevant to a successful outcome

School of Engineering Sciences

Approaches to resolving issues

Structured approaches

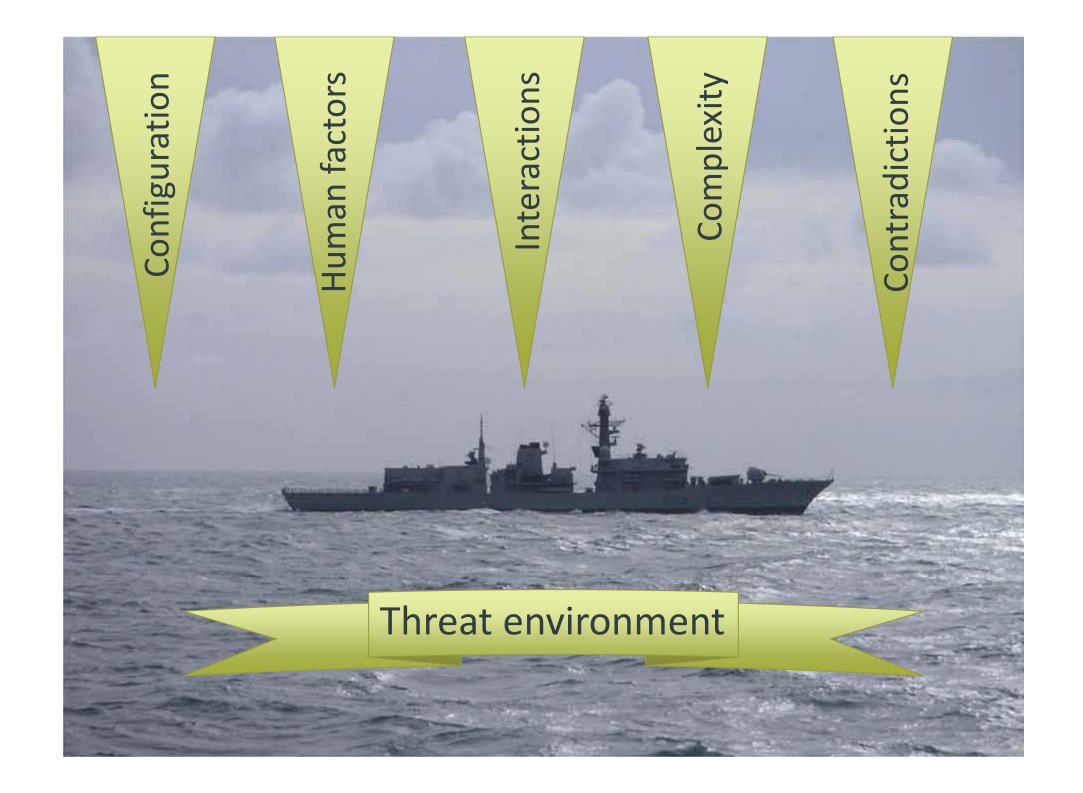
- Collate inputs
- Analyze
- Sort according to value to project
- Document decisions and rationale
- Monitor progress
- Revisit decisions where necessary but maintain logical construction
- Archive for future use

Brainstorming

- All ideas are potentially valuable
 - Keep the 'baby ideas'
 - Solutions need imagination
- Need to collect all ideas, however unlikely
- Group ideas into similar insights
- Recognize that balance will be 'participant specific'
- Remember need to generate a shared vision based on several viewpoints

Hazard identification

- Identifying potential hazards is essential to understanding risks
- Effectiveness is improved with right participants
- Operators and users have a lot to contribute
- Must go beyond accumulated experience
 - Hazards should not be dismissed because no evidence of occurrence
 - Elimination because 'it shouldn't happen' is usually invalid


These things do happen

Concept of Operations

- What is the purpose of the asset?
- Who will use it?
- How will it be used?
- Where will it be used?
- How will the asset REALLY be used
 - Change of operating area?
 - Change of operational mode?
 - Change of operators?

The way forward

- Think about the issues that have been discussed
- Seek out issues relevant to your role where Systems Engineering could be beneficial
- Test out the principles that have been presented, using the standards and methods
- Look beyond disciplinary boundaries and look for gains in performance environmental, safety, commercial

Icebreaker

- Think of a 'system' that you are familiar with
- What are the boundaries of the system?

• Who has an interest in the design of the system?

• Has your view changed? Yet??

Professor Vaughan Pomeroy r.v.pomeroy@soton.ac.uk